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A S T U D Y  OF H E A T - T R A N S F E R  P R O C E S S E S  

IN A S U P E R S O N I C  F L O W  A R O U N D  A S P H E R I C A L L Y  B L U N T E D  

CONE W I T H  A L L O W A N C E  F O R  I N J E C T I O N  OF A G A S - C O O L E R  

V. I. Z inchenko and A.  Ya. Kuz in  UDC 536.24.01 

The heat- and mass-transfer processes of a spherically blunted cone and a supersonic airflow are 
identified by the methods of solving direct and inverse problems with allowance for the heat flow 
along the contour and the injection of a gas-cooler. The ranges of applicability of the standard 
one-dimensional approaches and the method of a thin wall for recovering heat fluxes directed 
toward the body in flow are shown in the entire time period considered. 

In a supersonic flow around aircrafts, the heat flow along the contour and the injection of a gas-cooler 
from the surface are effective means for decreasing the surface temperature in the region of large heat loads 
[1-4]. The solution of conjugate [5, 6] and inverse [7, 8] heat-conduction problems is widely used to determine 
the heat flux and the temperature. The combined solution of the direct (DHCP) and inverse heat-conduction 
problems (IHCP) in a two-dimensional formulation increases the reliability of results and provides insight into 
the processes under study. Regularized numerical methods are preferred in solving multidimensional nonlinear 
IHCP that involve the injection and the complex geometry of aircrafts [9]. In the publication [9] devoted to 
recovery of heat fluxes in a supersonic flow around a spherically blunted cone, Zinchenko and Kuzin showed 
the need to solve IHCP for a number of materials in regions where the heat flux qw(s) changes substantially 
along the generatrix. In the presence of gas injection from a limited part of the surface, this behavior of qw(s) 
is observed in the region behind the injection section where a heat-shield regime is realized, which corresponds, 
under certain conditions, to the maximum heat fluxes and surface temperatures. Therefore, one needs to use 
models that take into account the heat flow along the generatrix and estimates of the standard one-dimensional 
approaches to solve the inverse problem of recovery of the heat flux and the surface temperature. 

In the present paper, the solution of the identification problem of heat-transfer processes in a supersonic 
air flow around a spherically blunted cone is considered with account of the heat flow along the contour and 
the injection of a gas-cooler from a spherically blunted surface. The effect of the thermophysical properties of 
the material, the intensity of the injected-gas flow rate, and the two-dimensionality of heat-transfer processes 
on the parameters of the nonstationary heat transfer are studied by the methods of solving direct and inverse 
heat-conduction problems. 

1. Phys ica l  and M a t h e m a t i c a l  Formula t ion  of D i r e c t  and  Inverse  P rob lems .  The heating of 
a spherically blunted hollow cone in an axisymmetric supersonic air flow is considered. In describing heat- 
transfer processes in a porous spherical shell with allowance for the assumption that the filtration of the gas 
injected toward the surface is one-dimensional, one can use the energy-conservation equation in the natural 
coordinate system 
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For the conical section of a body, the heat-conduction equation has the form 

n~vp2c2CgToo---t- rl 0 rA2 + r A 2 ~ n  ( 0 < n <  RN' (1 <(<~b). (1.2) 

The initial and boundary conditions are written in the form 

T(0, (, n) = Tin((, n), 0 <. n <~ L/RN, 0 <~ ( <. (b; 1.3) 

hw)] n=_0 ~'(1- ~) OoT n=+o -R; [ ( ~ / c p ) l ( ~ / ,  - - ~ T 4  _0 = - -  , 0 ~< ( < (1;  1 .4 )  

n=-0  ~ :  ~=+0 

_ A2 
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AI(1 - ~o) O T  , = L / R N  rw (Tg - T w l ) ,  0 < ( < El; 1 .6 )  
RN On = (pv)~%~ (rH1)~, 

O~ ,=LIRN "= 0, r < ( ~ (b; (1.7) 

~--~ ~=0 0; (1.8) 
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In Eqs. (1.1)-(1.10), T is the temperature, n -- 5/RN, ( = s/RN are the transverse and longitudinal 
nondimensional spatial coordinates, t is the time, r = ( r ~ / R N ) -  n c o s ( ~ r / 2 -  (), H1 = 1 - n  are the 
Lam~ coefficients, RN is the spherical bluntness radius, L is the shell thickness, ~1 = ~r/2 - / 3  (/~ is the cone 
angle), r~/Rg = sin(  for the spherical section and rw/RN = sin~l + (~ - - (1 ) s in~  for the conical section, 
p is the density, cp9 is the coefficient of specific heat capacity of the gas, c is the coefficient of specific heat 
capacity of the solid, A is the heat conductivity, a is the heat-transfer coefficient, (pv)w is the gas-cooler flow 
rate, ~ is the porosity, tI~ is the recovery enthalpy, hw is the gas enthalpy on the wall, ~ is the emissivity 
factor, and a the Stefan-Boltzmann constant. 

The subscripts w and wl  refer to the quantities at the shell surface n = 0 and the inner surfaces of 
the shell, respectively, the subscripts 1 and 2 refer to the thermophysical characteristics of the spherical and 
conical sections, respectively, the subscript g refers to the gaseous phase of the porous spherical shell, and the 
subscripts "in" and "fin" refer to the initial and final states. 

In the boundary layer, we consider the mixed flow regime: laminar at the porous spherical shell in the 
vicinity of the stagnation point and turbulent in the remaining section of the spherical shell and the cone. The 
standard model of a pointwise laminar-turbulent transition is used; the transition point is given with account 
of the results of the parametric  calculations of the heating problem for the shell, which were performed in the 
conjugate formulation where exact boundary-layer equations were used in the gaseous case [3]. 

Provided the air is injected into the incoming flux, the heat-transfer coefficients are determined by the 
formula [10] 

(pv)~(() ), (i.ii) (a/cp) 1 ---- (ol/cp)O1 exp (--  r 

where (a/cp)~ is the heat-transfer coeff• in the absence of injection, r is a coefficient equal to 0.37 and 
0.6 for the laminar and turbulent  regimes, respectively. 
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In the  shielded zone of the conical section, with allowance for the t rea tment  suggested in [11] the 
heat- transfer  coefficient takes the form 

(Oz/Cp)2 = (Og/cp)O(1 -- ~Ib6"2). (1.12) 

Here (a /%)~ is the  heat-transfer coefficient in the absence of injection, b is a nondimensional  parameter  that  
characterizes the  ratio of the total mass of the injected gas to the product of the heat-transfer coefficient for 
the cross section z in the absence of injection by the cone surface area from Zl to the current value of z (z is 
the axial cylindrical coordinate), and (1 and ~'2 are constants  determined from a comparison with the results 
of solution of the  conjugate problem [3]. 

If the law of gas flow rate for a sphere is taken in the form 

(pv)w(~) = (pv)w(O)(1 + a sin 2 ~) 

we have 

b = 

a = coast),  

2(pv)w(O)[1 - cos (1 + a(2/3  - cos (1 + (1/3)COS 3 ~1)] 

(z - zl)(cos/3)-112 sin(~r/2 -/3) + tan ~3(z - zl)](c~/%) ~ 

In the absence of injection, the heat-transfer coefficients are determined with the use of the data  from 
[12]. On the spherical section, we have 

(a /%)~  = (0.55 + 0.45cos 2~)(a1%)~ (c~/%)~(0) ~ 1.05U~~ ~ 5, (1.13) 

for the laminar-flow rate regime and 

= (3.75 sir, ~ - 3.5 sin 2 ~)((~/%)0(~.) 

125 08 -02  ((~/Cp)?(~,) ,~ 16.4U• p ~  R N " (1 + hw/Heo)  -213 (1.14) 

for the turbulent-flow regime. 
On the conical section, we have 

(alCv)~ = 2.2(Pe/Pr176176176 (1.15) 

for the turbulent-flow regime. 
The  value of Hr is determined by the formula 

"P, "P, 0 x(3'-l)/'r v ~ r ( U e / V m )  2] (1.16) H, = Heo[( el e J + 

for the laminar-flow regime and by the formula 

Hr = Heo[(Pe/Peo) ('r-1)/~ + ~ r ( u e / v m )  2] (1.17) 

for the turbulent-flow regime. 
For a sphere, the pressure distribution over the body surface referred to the value of the deceleration 

pressure is found by the formula [13] 

(P~/Peo)(~) = 1 - 1.17sin 2 ~ + 0.225 sin 6 ~ (1.18) 

for a sphere, and it is taken from the table of [14] for a cone. The air enthalpy at the surface is hw = 
965.5Tw + 0.0735T 2. 

[n Eqs. (1.13)-(1.17), the following values are used: He0 = h~[1 + (7 - 1)M2/2],  Ue/Vm = 
k / 1 -  (Pe / r ,  o ln  x(7-1)/7, Vm = x/TH-~, and k = (7 - 1 + 2 / M 2 ) / ( 7  + 1); here U~ [km/sec] is the motion 

velocity, poo [kg /m 3] is the density in the incoming flow, RN fro] is the spherical bluntness radius, 7 is the 
adiabatic exponent ,  M is the Mach number,  Pr is the Prandt l  number; the subscripts e and e0 refer to the 
quantities at the  outer frontier of the boundary layer and the outer frontier at the stagnation point, and the 
subscript co refers to those in the incoming flow. 

The  two-dimensional direct problem is to find the temperature field T(~ ,n ,  t) in the domain b = 
{(~,n, t) :  0 <~ ~ <~ ~b,O <~ n <~ L/RN,O < t <~ tfin} satisfying Eqs. (1.1) and (1.2), the initial and boundary  
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conditions (1.3)-(1.10) with relations (1.11)-(1.18). 
If the convective heat flux from the gaseous phase qw(~, t) = ( a / C p ) ( H r  - hw) is not known and one 

needs to find this flux and the temperature field T((,  n, t) in the domain D = {((, n, t): 0 ~< ~ ~< (b, 0 ~< n < 
L/RN,  0 < t ~ t~n} according the known additional condition 

T(~, L / R N ,  t) = Tw,(~, t), (1.19) 

we have the formulation of the two-dimensional boundary IHCP. The total heat flux to a solid body Qw(~, t) = 
qw - e (rT4 is found by means of the found heat flux qw(~, t) and temperature T,,(~, t). 

2. A l g o r i t h m s  for So lv ing  D i r e c t  a n d  Inve r se  P r o b l e m s .  Similarly to [9], we use the method 
of splitting over the spatial variables n and ~ to solve the two-dimensional DHCP. The one-dimensional 
equations obtained by splitting are solved by the iteration-interpolation method [5, 8] with iterations over the 
coefficients. Iterations are terminated upon reaching the required accuracy in determining the temperature. 

For conveniently presenting the algorithm for solving the two-dimensional IHCP, Eqs. (1.1) and (1.2) 
are given in the general form 

0--~ F( + fn  ~nn = -I t"  N + C 0---t-' (2.1) 

where the form of the coefficients F(, F,~, K,  and C is determined by the formulation of the problem. 
To find the temperature in the (l, k)th spatial node, the recurrence relation 

Bo, J = FJU, (l = O, L, j = 1, M) (2.2) 

is obtained approximating the derivatives from [15]. 
tlere 

J J �9 Tj - T~-~I B j F~t,k+1 + F~t,k K:,k+1. F j = C j t,k+a 
l,k = 2h~ 2hn ' l,k l,k+l ht 

J J J ~j j J ,j j (FXt,k+2 + F~nl,k+l)(Tl,k+2 ~/l,k+l)- FJnl,k+l [ CO ( I':~,k+,Tt,k+2 
2h 2 2hn ~-~ F~ 04 ]Jt,k+l" 

In calculating the derivative with respect to ~, the step h~ was taken variable in the nodes of the 
differential grid and conditions (1.8) and (1.10) are taken into account at the boundaries of the region ~ = 0 
and ~ = ~b. Here and below, L, K, and M are the number of nodes of the differential grid with respect to ~, 
n, and t, and h~, h,~, and ht.are the appropriate steps over these variables. 

The nonlinear relation (2.2) is used for finding the temperature at the kth spatial line with the use of 
the known temperature  values at the (k + 1)th and (k + 2)th lines. The resulting value is refined by iterations 
over the coefficients. The known temperature value at the (k + 1)th line is used as the initial approximation. 
The calculation begins with finding the temperature value at the ( K -  2)th line. The temperature value 
at the Kth  line is given by the experimental function Twl(~, t) from (1.19), and it is determined from the 
finite-difference analog of conditions (1.6) and (1.7) at the (K  - 1))th line. Using relation (2.2) successively 
for the (K - 2), (K - 3 ) , . . . ,  and zeroth lines, we find the temperature field for the entire region/)  and the 
total heat flux Qw([, t). 

This method of solving IHCP is referred to the class of direct numerical methods (DNM) [7]. The steps 
over spatial variables and time are used here as the natural regularization parameters. The potentialities of 
the DNM are substantially extended if the interpolation and approximation of one- and two-dimensional cubic 
splines [16], smoothing, etc., are used primarily for processing of the initial data and for calculations. 

If necessary, the DNM supplement well the regularized numerical methods [15]. In this case, the 
algorithm of calculation is constructed as follows. In finding the temperature value on the kth spatial line, 
staged regularization over t and ~ is performed. At the first stage, for Eq. (2.2) Tikhonov's functional is 
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written in the form 

~ ~'~ u'pJ+l 2T//k TZ,; 1) 2 M J J j 2 O ~ k l ~ _ ~ ( ~ j  _ T~ ;1)2 M 
LI/i'k(O0 j=l  t j=l  t j=l  =~_, (B t , kT i ,  k - Fi,k) + -~2 z_,~li,k + --~--4 Z..,t~l,k -- + (1 = 0, L'). (2.3) 

After minimizat ion of Eq. (2.3) over all T j (j  = 1, M),  for finding the tempera ture  in the (l, k)th l,k 
spatial node, we obtain a system of nonlinear algebraic equations with a symmetric five-diagonai, positively 
defined matrix, whose coefficients are given in [15]. The  system is solved by the method of nonmonotonic 
sweep with iterations over the coefficients. The  known temperature  in the (l, k + 1)th spatial node is used as 
the preliminary approximation.  The iteration process is completed when the required accuracy of determining 
the temperature  is at tained. This procedure is successively used for finding the tempera ture  in all the nodes 
of the kth line. 

At the second stage, Tikhonov's  functional is used in the form 

L L-1 L 
ai,  J J ; j j 2 = }"~(BI,kTi, k - Fi,k) + mica E ( T l + l , k  -- Ti,k)/h~t + 43k4 E [ T / + l , k h ~ l _ l / h ~ l  

/=0 1=0 /=0 
j 2 -2 -T~k(1 + h( t -1 /h ( t )  + Ti_l,k] h ( t _ l (h ( l _ l  + h(l) -2 (j  = l,  M ) .  (2.4) 

In the functionals (2.3) and (2.4), a is the  regularization parameter  and kl, k2, k3, and k4 are 
nonnegative numbers.  

Optimization of (2.4) over all T j (l 0, L) for finding the temperature  on the kth spatial line at the l,k =" 
j t h  moment of t ime yields a system of nonlinear algebraic equations with a symmetric five-diagonal, positively 
defined matrix similar to that  given in [15]. The  sys tem can also be solved by the method  of nonmonotone 
sweep with i teration over the coefficients. The  tempera ture  value found at the first stage of solving IHCP 
is used here as the initial approximation. Using this procedure successively for all the moments  of time, we 
determine the regularized tempera ture  T~, k (l = 0, L and j = 1, M) on the kth line. We then pass to the 
(k - 1)th line and the calculation process is repea ted  until the surface temperature  of the body is found. The 
heat flux Qw(~, t) in the region D is determined by the known field of temperatures.  The best approximation 
is chosen according to the principle of rcsiduals [15, 17]. The residual equation is solved by the method of 
chords. 

3. R e s u l t s  of  N u m e r i c a l  C a l c u l a t i o n s .  The  heat transfer of a spherically blunted cone with the 
half-opening angle /3 = 5 ~ was calculated numerical ly for the determining parameters from [3]: Moo = 5, 
R N  = 0.0508 m, and P~0 = 3.125 �9 105 Pa. T h e  values of other parameters are: Ur162 = 1600 m/see,  p c r  
0.131 kg /m 3, 3' = 1.4, Pr = 0.7, cp = 1024 J / ( k g - K ) ,  IIeo = 1.536- 106 m2/sec 2, L = 2.159- 10 -3 m, 
Tin = 288 K, r = 0.7, cr = 5.67- 10 -s  W / ( m  2. K4), (1 = 0.12, (2 = 0.165, ~ = 0.1, (pV)w = 3 kg / (m  2-see). 
Copper [,~ = 386 W / ( m - K ) ,  p = 8950 k g / m  3, and c = 376 J / ( k g . K )  and steel (A = 20 W / ( m - K ) ,  
p = 7800 k g / m  3, and c = 600 J / ( k g .  K)] are used as the shell materials. 

Figures 1 and 2 show the results of the solution of DHCP. Figure la  and b shows the distributions of 
the surface t empera ture  and the heat fluxes for a flow of an impermeable copper shell (solid curves) and in 
the presence of regular injection (pv),~(~) = 3 k g / ( m  2- sec) including (dashed curves) the heat flux along the 
body contour at different moments  of t ime and ignoring (crosses) this flux. Curves 1-5 in Fig. la  correspond 
to t = 0, 2, 10, 30, and 200 sec. Here curves 5 correspond to the stationary regime. In Fig. lb, curves 1-3 
correspond to the times t = 0.1, 2, and 10 sec. At the  same time, the radiation equilibrium surface temperature 
T~,~q is shown in Figs. la  and 23 by dot-and-dashed curves. The  temperature  T,,,r is determined from the 
nonlinear relation 

qw(~, t )  - ~aT4,eq = O, (3.1) 

in the absence of injection and from the condit ion of energy conservation at the surface with account of the 
stationary solution for the th in  porous shell 

qw(~, t) -- r -- (pV)wCpg(Tw,eq - ~rin) (3.2) 
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in the presence of injection from a spherically blunted surface. 
With the heat flux along the contour ignored, in the presence and in the absence of injection the 

stationary surface temperature coincides with the radiation equilibrium temperature of the surface (curves 5 
in Fig. la), thus showing the reliability of the numerical results obtained. 

As is seen from Fig. 1, the injection decreases the surface temperature and the heat flux. This decrease 
is the greatest in the spherical'ly blunted region. Behind the injection section, the heat-shield regime is realized 
and the maximum shell temperature is attained at the conical surface. For heat-conducting materials, the 
shell temperature becomes uniform owing to the heat flow from the peripheral section of the cone toward 
tile spherical bluntness. Neglect of the two-dimensional nature of heat-transfer processes in the presence of 
injection leads to a large difference in the surface temperatures. For example, for t = 200 sec and ~ = 1.6 this 
difference is approximately 530 K. On the peripheral section of the cone, the differences in the heat fluxes and 
the surface temperatures calculated by one- and two-dimensional mathematical models become insignificant. 

Figure 2a and b shows the effect of the injection intensity on the distribution of the stationary 
temperature and the heat flux along the contour. Curves 1-5 correspond to (pv)w({) = 0, 1.626, 3, 6, and 
10 kg/(m 2 �9 see). As one should expect, the surface temperature and the heat flux decrease as the injection 
becomes more intense. With increase in the intensity of injection from 1.626 up to 10 kg/(m 2- see), the 
stationary surface temperature drops by about 300 K and coincides with the temperature of the injected gas 
in the major part of the bluntness and the heat flux becomes a factor of 5 less intense. For (pv),o(~) = 0 
and 10 kg/ (m 2- see), the difference in the stationary temperatures at the spherical part reaches 1000 K. 
On the peripheral part of the cone, the difference between the stationary temperatures is about 50 K. The 
nonmonotone dependence of Qw on the rate (pv)w (for example, curve 1 in Fig. 2b, which lies below the curves 
with account of injection) is due to the surface-temperature effect on the total heat flux. At the same time, 
the heat-transfer coefficient decreases monotonically depending on the injection for different cross sections {. 

891 



Qw" 105 W/m2 

8 

Qw, lOs Wln'~ 

1 

0 2 4 

t J  ^ 
J! q 

',, | 

2 4 ~ 

Fig. 3 Fig. 4 

Dashed curves 1 and 5 in Fig. 2b show distributions of the heat-transfer coefficients a/Cp along the generatrix 
for (pv)w(~) = 0 s 10 kg/(m 2. sec), respectively. One can see that the injection decreases the maximum 

heat-transfer coefficient by almost a factor of 9 in the region of a porous spherical bluntness. 
Dot-and-dashed curves 2 and 5 in Fig. 2a show the distribution of the radiation equilibrium temperature 

for (pv)~,(~) = 1.626 and 10 kg/(m 2- sec), respectively. The maximum difference between the temperature 
values on the spherical part is about 400 K and insignificant on the conical part. In the heat-shield region, 
the temperature Tw on the conical part of the shell is much lower than the temperature Tw,eq because of the 
heat flux toward the peripheral part. 

Figure 3 shows the results of comparison between the solutions of the [HCP (dashed and dotted 
curves) and the exact solution (solid curves) for t = 1 and 10 sec (curves 1 and 2) for the gas flow rate 
(pv)w(~) = 3 kg / (m 2- see). The solution of the two-dimensional DHCP is used as the "exact" solution and 
the temperature of the rear surface of the  shell found from the solution of DHCP is used as the initial 
"experimental" temperature Twl(~, t) in solving IHCP. The dotted curves show the solution of a series of one- 
dimensional IHCP along the body contour. Figure 3 shows that the solution of the two-dimensional IHCP 
(dashed curves) is stable and in good agreement with the "exact" solution. The error in determining the heat 
flux is approximately 4-5%, and it is less than 1% for the temperature. The heat flux Qw obtained from the 
solution of one-dimensional IHCP along the body contour (dashed curves) can differ from the "exact" solution 
by several dozen percent with a change in the qualitative behavior near the sphere-cone joint for ~ ~ 1.48. An 
increase in the shell thickness from 2.159 to 10 mm leads to an insignificant increase in the error of T~(~, t) 
and Q~(~, t) from the solutions of the two-dimensional IHCP (up to 1 and 8-10%, respectively). 

The problem of whether it is relevant to employ the widely used method of a thin wall [10] for 
determining the flux at the surface of highly heat-conductive materials with allowance for injection is studied. 
According to this method, the total heat flux on the wall is determined by the formula 

dTw (3.3) 
t )  = qw( , t )  - = p c L  dt 

in the absence of injection and by the formula 

Qw((, t) = pcL dTw y + (pv)~cpg(T~ - Ta) (3.4) 

in the presence of injection. The heat flux Qw(~, t) calculated by formulas (3.3) and (3.4) is shown in Fig. lb 
and 3 by the solid curve with points. 

The numerical studies showed that ,  for a steel impermeable shell with low heat conductivity, the heat 
flux Qw(~, t) calculated by formula (3.3) is in good agreement (within 3-5%) with the "exact" heat flux. For a 
copper impermeable shell with high heat conductivity, the difference in the heat fluxes in the spherical section 
can exceed 50% (curves 2 and 3 in Fig. lb).  For times close to the initial moment of time, formula (3.3) gives 
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the largest error of determining the heat flux (curve 1 in Fig. lb). 
The calculation of the heat flux at the surface of a permeable copper shell by formula (3.4) increases 

the error of its determination (Fig. 3) and, for t ~> 1, the use of the formula is unreasonable. For small t, the 
error in determining Q~ by formula (3.4) decreases. In particular, for t = 0.2 sec, the error of determining 
the maximum heat flux is about 5-6%, which enables one to employ the method of a thin wall at moments 
of time close to the initial one. At the same time, the methods of solving two-dimensional IHCP enable us to 
recover with high accuracy the heat flux Qw(~, t) in the entire range of time variation of the process, which is 
very important,  since the heat-transfer coefficient a/cp is related to the flow conditions, the flow regime, and 
the geometry of the body and can depend greatly on the surface temperature and its derivative OTw/O~ [.5]. 

The effect of the errors of determining the initial temperature T~,l(~,t) on the solution of the two- 
dimensional IHCP is studied. To this end, the perturbations distributed over ~ according to a sawtooth law 
with a deviation of 1% from the current value of temperature are superimposed on the given temperature. 
The numerical results showed that, in this case, the surface temperature T~(~,t) can be restored with an 
accuracy not exceeding 1-2% even if DNM are employed. At the same time, the error in determining the 
heat flux Qw(~, t) can reach 25-30%. Figure 4 shows distributions of the heat fluxes along the contour for 
t = 1 sec. Here solid curve 1 refers to the "exact" heat flux, and the dashed (2) and dotted (3) curves refer 
to the heat fluxes obtained from the DNM-assisted solutions of IHCP, respectively, allowing for and ignoring 
preliminary smoothing of the initial temperature Twl(~,t) by Tikhonov's method with the regularization 
parameter chosen by the method of residuals [17]. One can see that the heat-flux dependence 2 is of an 
unstable character, whereas the smoothing enables us to obtain a stable dependence of the heat flux that is 
in good agreement with the "exact" one. 

With increase in the shell thickness from 2.159 up to 10 mm, the error of determining Tw((, t) increases 
up to 5% and becomes a factor of 10 greater for the heat flux. Nevertheless, the numerical calculations showed 
that,  in this case, the employment of DNM and the smoothing of the initial temperature enabled us to obtain 
stable dependences of the temperature and the heat flux with errors not exceeding 5 and 20%, respectively. 

Thus, solving DHCP, we have shown that the use of high-conductivity materials and injection of a gas- 
cooler from the surface of spherical bluntness is effective for decreasing the heat fluxes and the temperatures 
at the surface. A method of solving two-dimensional IHCP has been proposed and realized. This method 
enables one to restore the heat flux toward the body with good accuracy, whereas the methods of a thin wall 
and one-dimensional IHCP give a large error. 
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